Introduction

* Transfer learning has become an increasingly popular technique
in private machine learning as a way to leverage a model
trained for one task to assist with building a model for a related
task.

* Because pretraining data is often considered to be public, it
provides a good initialization for sensitive downstream tasks.

e Unfortunately, large, public datasets are typically scraped from
the Web indiscriminately, raising concerns about the sensitivity
of this data.

Thus, the central question we attempt to understand in this work
is: How much sensitive information does a finetuned model
reveal about the data that was used for pretraining?
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downstream task.
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Conclusion

* Finetuning leaves pretraining examples at risk
of membership inference attacks.

* |t an individual’s data was included in a public
pretraining dataset, finetuning on this individual'’s
data with DP will not protect them from
membership inference attacks.

Logit Distributions of Finetuned
Models Queried on Pretraining Data
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Finetuned on Coarse-Labeled CIFAR-100 with
DP (¢ =0.5,6 = 10™>) when Dp- N\ Dy # @

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (Coarse CIFAR-100) 5.7% 16.1%

TMI (CIFAR-10) 2.0% 8.0%

Adapted LiRA (Coarse CIFAR-100) 0.7% 3.1%

Adapted LiRA (CIFAR-10) 0.3% 1.5%

LiRA Directly on Pretrained Model 15.6% 22.9%

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI - Coarse CIFAR-100; (¢ = 0.5, = 10™°) 2.6% 8.5%
TMI - Coarse CIFAR-100; (e = 1,8 = 107°) 4.2% 12.6%
Adapted LiRA - Coarse CIFAR-100 (¢ = 0.5,5 = 107°) 0.17% 1.8%
Adapted LiRA - Coarse CIFAR-100 (¢ = 1,6 = 107°) 0.35% 2.8%
DP Upper Bound (¢ = 0.5, § = 107°) 0.16% 1.6%
DP Upper Bound (e = 1, § = 107°) 0.27% 2.7%

Attack Performance



