
TMI! Finetuned Models Spill 
Secrets from Pretraining

John Abascal, Stanley Wu, Alina Oprea, Jonathan Ullman 

Northeastern University

Introduction


• Transfer learning has become an increasingly popular technique 
in private machine learning as a way to leverage a model 
trained for one task to assist with building a model for a related 
task. 


• Because pretraining data is often considered to be public, it 
provides a good initialization for sensitive downstream tasks.


• Unfortunately, large, public datasets are typically scraped from 
the Web indiscriminately, raising concerns about the sensitivity 
of this data.


Thus, the central question we attempt to understand in this work 
is: How much sensitive information does a finetuned model 
reveal about the data that was used for pretraining?
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Methodology


• We propose a metaclassifier-based membership 
inference attack, TMI.

• TMI leverages the influence of memorized 

pretraining samples to infer membership by making 
a metaclassification over all possible labels in the 
downstream task. 


Results


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.1% FPR, our attack has a TPR 8.1⇥ and 6.7⇥ higher than adapted
LiRA on Coarse CIFAR-100 and CIFAR-10, respectively. TMI also
achieves an AUC about 1.3⇥ higher than adapted LiRA on both
tasks.
Q1 Answer: Yes, it is possible to infer the membership status of an
individual in a machine learning model’s pretraining set via query
access to the �netuned model.

Table 1: TPR at Fixed FPR of TMI andOurAdaptation of LiRA
when Target Models are Finetuned Using Feature Extraction
(Figure 3)

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (Coarse CIFAR-100) 5.7% 16.1%
TMI (CIFAR-10) 2.0% 8.0%
Adapted LiRA (Coarse CIFAR-100) 0.7% 3.1%
Adapted LiRA (CIFAR-10) 0.3% 1.5%
LiRA Directly on Pretrained Model 15.6% 22.9%

5.3.2 Updating Model Parameters.
Q2: Does updating a model’s pretrained parameters instead
of freezing them prevent privacy leakage?

CIFAR-10. The ResNet models we pretrain on CIFAR-100 are
divided into ResNet blocks or layers, which each contain multiple
sub-layers. When �netuning pretrained ResNet models on CIFAR-
10, we unfreeze the weights in di�erent subsets of these ResNet
layers. More concretely, we observe the performance of our attack
on ResNet models which have had their classi�cation layer (feature
extraction), last 2 layers (62% of total parameters), and last 3 layers
(90% of parameters) �netuned on the downstream task.

In Figure 4, we observe that the AUC and accuracy of TMI
slightly decrease as we update an increasing number of parame-
ters. We also observe a very slight decrease the TPR at a 1% FPR
when the number of �netuned parameters is increased from 2 lay-
ers to 3 layers, but TPR decreases at the FPR we consider when
comparing to the TPR of TMI on models �netuned with feature
extraction. Table 2 shows that updating the model’s parameters
induces a decrease in up to 0.8% at a 0.1% FPR and up to 3.3% at
a 1% FPR. Nevertheless, TMI achieves comparable AUC and bal-
anced accuracy metrics to feature extraction when we �netune the
majority of model parameters.

Prior work [31] has shown that samples used earlier in training
are more robust to privacy attacks. In the feature extraction setting,
the information learned by the model during pretraining is essen-
tially frozen. Unlike feature extraction, we are updating the model’s
parameters with information about the downstream samples when
�netuning. We hypothesize that this may lead to a decrease in our
attack’s success.
Q2 Answer: Updating larger subsets of model parameters slightly
decreases the success of our TMI attack when compared to models
�netuned on downstream tasks using feature extraction, but we are
still able to infer the membership status of the majority of samples
in the pretraining dataset.
Q3: Does the similarity between the pretraining and down-
stream task a�ect the privacy risk of the pretraining set?

Table 2: TPR at Fixed FPR of TMI when Target Models are
Finetuned on CIFAR-10 by Updating the Pretrained Weights
(Figure 4)

Task TPR @ 0.1% FPR TPR @ 1% FPR

Feature Extraction (CIFAR-10) 2.0% 8.0%
Last 2 Layers (CIFAR-10) 1.1% 5.6%
Last 3 Layers (CIFAR-10) 1.1% 4.7%

Oxford-IIIT Pet. The Oxford-IIIT Pet dataset presents a unique
challenge for �netuning our pretrained ResNet models. To �netune
these models on the pet breeds classi�cation task, it is necessary to
unfreeze all of the layers. Otherwise, the model would have little
to no utility with respect to the downstream task. Because the 37
pet breeds that appear in this dataset do not appear in and are not
similar to any of the classes in the pretraining data, freezing any
of the model’s weights is an innefective strategy for this task. In
this evaluation of TMI on models transferred from CIFAR-100 to
Oxford-IIIT Pet, we �netune for the same number of epochs with
the same hyperparameters as the models in our experiments with
CIFAR-10.

Table 3: TPR at Fixed FPR of TMI when Target Models are
Finetuned on Oxford-IIIT Pet by Finetuning All Layers

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (Oxford-IIIT Pet) 0.5% 2.6%
Adapted LiRA (Oxford-IIIT Pet) 0.08% 1.0%

We observe in Figure 5 that the accuracy and AUC of our adap-
tation of LiRA becomes e�ectively as good as randomly guessing
membership status. In contrast, TMI is still able to achieve some
amount of success, with an AUC of 0.55 and a balanced accuracy
of 53.4% over 128 target models with 1000 challenge points each.
Additionally, our attack demonstrates a 2.6% true positive rate at a
1% false positive rate.
Q3 Answer: Even though the downstream task of pet breed classi�-
cation is dissimilar from the pretraining task and all of the model’s
parameters are �netuned for 20 epochs, TMI is able to achieve
non-trivial success metrics when inferring the membership status
of samples in the pretraining dataset.

5.3.3 Finetuning Pretrained Language Models.
Q4: Can the attack be generalized to domains other than
vision?

To answer this research question, we evaluate the success of our
TMI attack in the natural language domain. In particular, we focus
on publicly available pretrained large language models (LLMs), or
foundation models [8], which we �netune on a text classi�cation
task.

Due to computational limitations, we do not train LLMs from
scratch. As an alternative, we evaluate our attack on a widely used
pretrained foundation model, Transformer-XL [17], along with its
corresponding tokenizer, which are hosted by Hugging Face [51].
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Conclusion


• Finetuning leaves pretraining examples at risk 
of membership inference attacks. 


• If an individual’s data was included in a public 
pretraining dataset, finetuning on this individual’s 
data with DP will not protect them from 
membership inference attacks.

Paper Contact

Logit Distributions of Finetuned 
Models Queried on Pretraining Data

Attack Performance 
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believe this to be the case due to the additional variance incurred
in a (global) metaclassi�er dataset containing prediction vectors
from all challenge points. In contrast, the metaclassi�er datasets
used in our vision tasks only contained labeled prediction vectors
with respect to a single challenge point.

Figure 6: TMI Performance on a Publicly Available
Transformer-XL Model Finetuned on DBpedia-14 Topic Clas-
si�cation

We present the results of our evaluation on LLMs in Figure 6 and
Table 4. Although it is common practice to use : =

p
= neighbors

in a KNN, we also report results using : equal to the number of
shadowmodels as it appears to increase attack success. As shown in
Table 4, we observe that TMI using the highest number of shadow
models (64), is able to achieve a TPR of 3.4% and 8.8% at 0.1% and
1% FPR, respectively. These results are comparable to our �ndings
on CIFAR-10 from Table 2 in the vision domain. Surprisingly, we
do not observe a notable di�erence in our summary statistics as
we increase the number of shadow models from 16 to 64, with an
increase of only 0.652 to 0.673 in AUC, and 60% to 61.3% in accuracy
as shown in Figure 6.
Q4 Answer: Yes, we are able to generalize TMI to domains other
than vision. In particular, we are able to show that our attack is ef-
fective against pretrained language models, and present our results
on the publicly hosted Transformer-XL foundation model without
the need to pretrain any additional large language models.
Q5 Answer: Yes, TMI continues to be e�ective in this situation
where we �netuned public foundation models. This reinforces the
need for understanding privacy leakage in the transfer learning
setting used for foundation models.

5.3.4 Transfer Learning with Di�erential Privacy.
Q6: Is privacy leakage present evenwhen amodel is�netuned
using di�erential privacy?

We also discuss the performance of our attack on target models
that were �netuned with di�erential privacy. Because prior work
on transfer learning with di�erential privacy considers strategies
where an especially small percentage of parameters are trained on
the downstream task [5, 10, 41, 56], we freeze the pretrained model’s
weights and train only the �nal layer on the downstream task. In
our experiments, we perform feature extraction to �netune our

Table 4: TPR at Fixed FPR of TMI on Pretrained WikiText-
103 Transformer-XL (Figure 6)

Task TPR @ 0.1% FPR TPR @ 1% FPR

16 Shadow Models (: =
p
|⇡meta |) 1.6% 5.2%

16 Shadow Models (: = 16) 2.6% 7.0%
32 Shadow Models (: =

p
|⇡meta |) 2.0% 5.5%

32 Shadow Models (: = 32) 3.1% 8.1%
64 Shadow Models (: =

p
|⇡meta |) 2.2% 6.0%

64 Shadow Models (: = 64) 3.4% 8.8%

pretrained CIFAR-100 models on Coarse CIFAR-100 and CIFAR-10.
We train the �nal classi�cation layer using DP-SGD [5] with target
privacy parameters Y = {0.5, 1} and X = 10�5. As these are strict
privacy parameters, we set the clipping norm equal to 5 to achieve
reasonable utility on the downstream tasks.

Figure 7 shows that the success of our attack only decreases
slightly when di�erential privacy is used to train the �nal classi�ca-
tion layer on a downstream task. We believe that the slight decrease
in attack accuracy can be attributed to loss in utility with respect
to the downstream task from training with DP-SGD. When we
�netune our models on Coarse CIFAR-100 with privacy parameters
Y = 0.5 and X = 10�5, TMI has a TPR of 3.3% at a FPR of 0.1%
and a TPR of 10.7% at a FPR 1%. Additionally, our attack maintains
about 95% of the accuracy and AUC compared to the setting where
no privacy preserving techniques are used to �netune models on
Coarse CIFAR-100.

Prior work [11] has shown that state-of-the-art MI attacks, which
directly query the pretrained model, completely fail when the target
models are trained with a small amount of additive noise. For ex-
ample, when training target models using DP-SGD with a clipping
norm equal to 5 and privacy parameter Y = 8, LiRA has an AUC of
0.5. Through this evaluation, we reinforce the fact that transferring
pretrained models to downstream tasks with di�erential privacy
does not provide a privacy guarantee for the pretraining data.
Q6Answer: Finetuning a pretrained model using DP-SGD provides
a privacy guarantee only for the downstream dataset. Therefore,
DP-SGD has little to no impact on privacy risk of the pretraining
dataset, and these downstream models leak the membership status
of individuals in the pretraining dataset.

Table 5: TPR at Fixed FPR of TMI when Target Models are
Finetuned with DP-SGD (Figure 7)

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI - Coarse CIFAR-100; (Y = 0.5, X = 10�5) 2.6% 8.5%
TMI - Coarse CIFAR-100; (Y = 1, X = 10�5) 4.2% 12.6%
Adapted LiRA - Coarse CIFAR-100 (Y = 0.5, X = 10�5) 0.17% 1.8%
Adapted LiRA - Coarse CIFAR-100 (Y = 1, X = 10�5) 0.35% 2.8%
DP Upper Bound (Y = 0.5, X = 10�5) 0.16% 1.6%
DP Upper Bound (Y = 1, X = 10�5) 0.27% 2.7%

5.4 Ablations
In this section, we evaluate variations of TMI. We limit the ad-
versary’s access to the target model’s prediction outputs, consider
di�erent choices of metaclassi�er architecture, and study how the
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